Российские ученые увеличили дальность передачи сигнала в системе защищённых квантовых коммуникаций


Сегодня защитить свои данные стремятся не только крупные холдинги, банки и оборонные предприятия – тенденция к усилению информационной безопасности наблюдается и на малых предприятиях, и у отдельных пользователей. Однако алгоритмы шифрования данных несовершенны, их логику, пусть и не сразу, но все-таки можно раскусить.

В отличие от алгоритмического шифрования, которое сейчас используется повсеместно, шифрование, основанное на фундаментальных законах квантовой физики, в будущем позволит сделать передачу данных полностью неуязвимой для хакерских атак.  В квантовом канале в качестве носителей информации выступают одиночные фотоны, необратимо изменяющиеся, «попав в руки» злоумышленника. Поэтому легитимные пользователи моментально узнают о любом вторжении в канал при попытке перехвата ключа.

Исследователи из Лаборатории квантовой информатики Международного института фотоники и оптоинформатики Университета ИТМО при поддержке коллег из университета Хериот-Ватт в Эдинбурге (Шотландия) разработали новую технологию для эффективной генерации и рассылки квантовых бит, а также создали соответствующее устройство для квантовой связи. Это первая отечественная система, которая по совокупности характеристик способна конкурировать с лучшими мировыми разработками и может обеспечить передачу квантового сигнала по оптическому волокну на расстояния более 250 километров.

«Для рассылки квантовых бит мы используем так называемые боковые частоты, – рассказывает руководитель Лаборатории квантовой информатики Артур Глейм. – Такой подход дает нам ряд существенных преимуществ. В частности, это ведет к существенному упрощению конструкции устройства, высокой устойчивости к внешним воздействиям и большой пропускной способности квантового канала связи. По скорости и дальности передачи информации наша система сопоставима с абсолютными рекордами в области квантовой  коммуникации».

Принципиальная возможность устойчивой передачи квантового сигнала по оптическим линиям связи является основой для последующего внедрения систем квантовой криптографии, при помощи которых в будущем будет происходить защищённая передача ключей шифрования.

По мнению Роберта Коллинза, научного сотрудника Института фотоники и квантовых наук, Школы физико-технических наук Университета Хериот-Ватт, работа ученых может стать отправной точной для будущего развития всей квантовой криптографии.

«В перспективе данный подход способен обеспечить свободное сосуществование многих потоков данных с отличными друг от друга длинами волн в одном оптоволоконном кабеле. Более того, эти потоки могут подаваться прямо на существующие оптоволоконные линии совместно с традиционными коммуникациями», –  считает он.

Для кодирования квантовых бит лазерное излучение направляют на специальное устройство – электрооптический фазовый модулятор. В нем центральная несущая волна, исходящая от лазера, расщепляется на несколько независимых волн. После передачи по оптической линии связи в блоке получателя независимо выполняется аналогичное расщепление. От фазового сдвига созданных отправителем и получателем волн относительно друг друга будет зависеть, усилят они друг друга или погасят. После их детектирования и обработки получаются на выходе нули и единицы, из комбинации которых состоит квантовый ключ.

Именно метод кодирования квантовых бит при помощи разности фаз позволяет достичь высокой стабильности сигнала в системе.

«При прохождении через оптоволоконный кабель, – поясняет Олег Банник, один из разработчиков системы, сотрудник Лаборатории квантовой информатики Университета ИТМО, – все волны претерпевают непредвиденные изменения, которые везде одинаковы, благодаря чему при повторном прохождении волн через модулятор получателя изменения нивелируются и мы имеем ту же самую комбинацию, что и у отправителя».

Теперь перед разработчиками стоит задача создания полноценной квантово-криптографической системы и подготовка стандартов, которые позволят осуществить её внедрение в сотрудничестве с государственными и коммерческими структурами.

Статья: «Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong referenc» , A. V. Gleim, V. I. Egorov, R. J. Collins, et al. Optics Express, Feb. 2, 2016.

Тамара Беседина, 

Отдел по научным коммуникациям Университета ИТМО